november 2024

red flag!

This question has a bounty! Send solutions to puzzles@invariants.org.uk by 25th November (Monday of Week 7) at 4pm, UK time.

Consider a $2n \times 2n$ lattice points grid $S = \{(x, y) \in \mathbb{Z}^2 : 0 \le x, y \le 2n - 1\}$ for some integer $n \ge 2$. At the point (0, n - 1) we place a white flag while the remaining $4n^2 - 1$ points have a red flag.

At each step, we can switch the colour of all the flags from any row, column, or a parallel to any of the diagonals. Can we have all red flags after a finite number of iterations?

november 2024

the perfect riffle

This question has a bounty! Send solutions to puzzles@invariants.org.uk by 25th November (Monday of Week 7) at 4pm, UK time.

A perfect riffle on a sequence of length 2^n is defined as follows: split the sequence in half, and interleave the two sequences together. For example, a perfect riffle on the sequence **abcdefgh** gives **aebfcgdh**.

Consider a bit integer $b_1b_2 \dots b_{2^k}$, where each b_i is either 0 or 1, which represents some integer B in binary (i.e., $B = 2^{2^k-1}b_1 + 2^{2^k-2}b_2 + \dots + b_{2^k}$). By applying a perfect riffle on the b_i 's we get a bijection

$$r: \{0, 1, \dots, 2^{2^k} - 1\} \to \{0, 1, \dots, 2^{2^k} - 1\}$$

Now let minRiffle $(B) = \min\{B, r(B), r^2(B), \dots\}$. For each k, find a 2^k bit integer B that maximises $B/\min(B)$.

november 2024

probability and pagers

This question has a bounty! Send solutions to puzzles@invariants.org.uk by 25th November (Monday of Week 7) at 4pm, UK time.

Take a binary expansion $X = 0.x_1x_2x_3...$ where, for each $i \in \mathbb{N}$, $\mathbb{P}(x_i = 1) = 2/3$ and $\mathbb{P}(x_i = 0) = 1/3$.

- (a) Using careful reasoning to justify your answers, what are the values of $\mathbb{P}(X > 1/3)$, $\mathbb{E}[X]$ and $\mathbb{P}(X \in \mathbb{Q})$?
- (b) X is sent via a pager, and is displayed as the binary expansion $Y = 0.y_1y_2y_3...$ The pager is *catastrophically lossy*, in the following way: for some $u, k \in (0, 1), \mathbb{P}(y_1 = x_1) = u$, and for each $i \in \mathbb{N}$,

$$\mathbb{P}(y_{i+1} = x_{i+1} \mid y_i = x_i) = \mathbb{P}(y_i = x_i) \\
\mathbb{P}(y_{i+1} = x_{i+1} \mid y_i \neq x_i) = \max\{0, \mathbb{P}(y_i = x_i) - k\} \\
\mathbb{P}(y_i = x_i \mid x_i = 1) = \mathbb{P}(y_i = x_i \mid x_i = 0)$$

What is $\mathbb{P}(y_i = 1)$, for each $i \in \mathbb{N}$?

november 2024

liars

The following people, $P_1, \ldots, P_{2^{99}}$, say P_1 : My number is odd. P_2 : P_1 is lying. : P_{2k-1} : My number is odd. P_{2k} : P_k is lying. : $P_{2^{99}-1}$: My number is odd. $P_{2^{99}}$: $P_{2^{98}}$ is lying. How many people are lying?

november 2024

keep your distance

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear isomorphism.

- (a) Suppose there exists $x, y \in \mathbb{R}^n$ such that $x \neq y$ and |T(x) T(y)| = |x y|. Need T be an isometry?
- (b) Suppose there exists $c \in \mathbb{R}^n$ such that, for any $x \in \mathbb{R}^n$ we have |T(c) - T(x)| = |c - x|. Need T be an isometry?
- (c) Suppose for any $x, y, z \in \mathbb{R}^n$, at least one of the following equations is true:
 - |T(x) T(y)| = |x y|;
 - |T(x) T(z)| = |x z|;
 - |T(y) T(z)| = |y z|.

Need T be an isometry?