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Editorial

In spite of its title—picked, according to our Society’s lore, from

the volumes on Whitehead’s bookshelf—our magazine has been

anything but invariant. Since its birth in 1961, it has, like a stubborn

Phoenix, risen anew in the hands of each generation of editors.

This year G. Zein, from Imperial, and Y. Zang, from Cambridge,

have joined our ranks. G. J. Bala, already on to greater things, has

once again used his pen to the benefit of his alma mater. Not to forget

our very own T. Lam, S. Islam, T. L. Lee, N. Hayes, and Niphredil,

who have each shared a unique piece, the discovery of which I leave

you to enjoy.

Between their lines, you will find, in order of appearance: Serioso,

R. Bauer; Rythme no. 2, R. Delaunay; Tree of Knowledge no. 5,

H. af Klint; Composizione, 1916, P. Mondrian; Ekstase, K. Wiener;

Primordial Chaos, Group I, no. 16 and no. 7, H. af Klint; and Forest

Witches, P. Klee.

It is with joy that I now pass on the torch—first lit sixty-three

years ago by G. W. H. Smith, known to his readers by his humble

signature: gwhs—to Toby Lam, our new editor, with whom it has

been a pleasure to collaborate on this issue.

Yours invariably,

Diego Vurgait
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As we reflect on the year past, we celebrated the 10th anniversary of

The Andrew Wiles Building, which has been an excellent space for

students, researchers and the wider public.

However, it has not been without challenges. We have lost Vicky

Neale, who through her kindness and love for mathematics has

inspired many. While preparing this magazine, I discovered that she

was the editor of the 56th issue of Eureka, Cambridge’s counterpart

to The Invariant, 19 years ago. I sorely wish I could have sought her

advice editing this magazine.

More recently, some of the proposed changes to Part C teach-

ing have rattled undergraduates, prompting reassurances from the

department. We hope that better days lie ahead.

Without the committee’s support and contributions from our

writers, this magazine could not exist. I am particularly grateful to

Diego Vurgait, the outgoing magazine editor, for revitalising The

Invariant and for his guiding hand. I am also indebted to Isaac Li

for designing the cover as well as assisting with typesetting. Editing

the magazine has been fascinating work and I have learnt much in

the past months. I encourage any one of you who is interested to

take up the post next year. As always, we are in great need of articles,

essays, poems, puzzles, art and more for the next issue. Send in any

ideas you have to editor@invariants.org.uk and we will read

them with great interest.

Yours sincerely,

Toby Lam
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Message from the President

Welcome to the 2024 edition of the Invariant. Featured in this

magazine is a fantastic selection of articles, handpicked by our editors

Diego and Toby: it explores topics including the Ising Model, the

mathematics in art, and—a personal favourite—the lexicon of lecture

notes. Suffice to say, everybody’s interest will be piqued (though

there won’t necessarily be one article to pique everybody’s interest!).

Among the many experiences coming to Oxford, the Invariants

has stood out as a community where everyone can contribute—even

a fresher like me! At the first event with the new committee—a meet

and greet with puzzles and plenty of pizza—mathematicians from

all colleges were gathered, working together and sharing laughs (and

pizza). I also enjoyed seeing some biologists at our last talk; one of

many examples of the multidisciplinarity of maths. This is my vision

for the Invariants: a warm abode for all people to come together and

enjoy mathematics. I’ve included a quote from Vicky Neale which I

think exemplifies what is, and what will continue to be, the spirit of

the Invariants.

Lastly, I would like to extend my deepest gratitude to Diego and

Toby, without whom this edition would not be possible.

I’ll see you all on page 68!

Yours,

Vasil Zelenkovski



Maths needs you

Even if you don’t know exactly where you’re heading,

you’re not maths-obsessed,

you don’t think you’re a genius or

you don’t fit the ‘stereotype’ of a maths student,

there’s a place for you in maths.

—Vicky Neale
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The Inverse Function Theorem and the
Legendre Transform

Toby Lam

If I gave you a monotone, differentiable function f (x) with inverse

f −1 (x), could you give me the derivative and the antiderivative of

f −1 (x)?

The first question is easy! We all know about the inverse function

theorem. We just need to know f −1 (x) and f ′ (x). The second

question, however, might bring up bad memories of your past self

trying to remember calculus identities. It turns out that you only

need to know f −1 (x) and
∫
f (x) dx.

We will try to answer these two questions geometrically and show

how they are related to each other. We will begin by proving the

inverse function theorem geometrically.

A geometric proof of the inverse function theorem

As a reminder, we start off with a formal statement of the inverse

function theorem.

Theorem (Inverse function theorem) . Given a continuously differ-

entiable function f : ℝ → ℝ with f ′ (a) ≠ 0 at some point a, there

exists some interval I with a in its interior on which f has a continuously

differentiable inverse f −1, defined on f (I), and with derivative

d
dx
f −1 (x) = 1

f ′ ( f −1 (x))
∀x ∈ I .
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In school, we proved the above algebraically by differentiating

both sides of f −1 ( f (x)) = x. In a course in analysis, we would be

more rigorous.

We give the following geometric argument instead. We can first

plot the function y = f (x) on the Cartesian plane. Then we reflect

the plot across the diagonal y = x. The reflected plot is exactly the

plot of the inverse function. As all tangent lines of f are reflected

over the diagonal, the slope of each tangent line is multiplicatively

inversed. This is in essence the inverse function theorem, although

we need to be careful keeping track of where each point gets reflected

to.

Example. See figure 1. In red is the plot of y = ex and in blue is the

plot of y = ln x. We see how we they are related to each other by

a reflection across the green diagonal line, y = x. The tangent line

of ex at (−1, 1/e) is reflected across the diagonal to give the tangent

line of ln x at (1/e, −1). As such d
dx

��
x=1/e ln x = 1/

d
dx

��
x=−1 e

x = e.

This suggests another way of thinking about the inverse function

theorem. Recall that to plot a function f (x), we are essentially

parametrising a curve on ℝ2 by sending x to (x , f (x)). We can find

the slope of the curve at (x , f (x)) by finding the slope of the velocity

vector (1, f ′ (x)) to the curve, which is exactly f ′ (x).

Now, what if we parametrised the plot of the inverse function by

sending x to ( f (x) , x)? The slope of the curve at ( f (x) , x) will be

the slope of the velocity vector ( f ′ (x) , 1), which is 1/ f ′ (x). This is

exactly what the inverse function theorem says.
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Figure 1. Plot of ex and ln x.

The Legendre transform

Now we try to answer the second question: what is the antiderivative

of the inverse function? As for the inverse function theorem, we

can approach it both algebraically and geometrically. While the

algebraic method may not give us much insight, it is still worthwhile

to mention. Almost all of the results in this section come from a

1905 paper by Laisant.

Allow me to pull something out of the hat. Let F (x) be some

antiderivative of f (x). We can check that x f −1 (x) − F ( f −1 (x)) is

an antiderivative of f −1 (x): By the product rule we have

d
dx
x f −1 (x) = f −1 (x) + x

f ′ ( f −1 (x))
.
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By the chain rule we have

d
dx
F ( f −1 (x)) = f ( f −1 (x))

f ′ ( f −1 (x))
=

x
f ′ ( f −1 (x))

.

Combining the two, we get

d
dx

[
x f −1 (x) − F ( f −1 (x))

]
= f −1 (x).

For example, you can work out that d/dx [x ln(x) − x + C] = ln x

using the above. Unfortunately, it is not at all obvious where the

formula comes from. One could reverse the logic by performing an

integration by parts:∫
f −1 (x) dx

= x f −1 (x) −
∫

x
d
dx
f −1 (x) dx by parts

= x f −1 (x) −
∫

f ( f −1 (x)) d
dx
f −1 (x) dx

= x f −1 (x) − F ( f −1 (x)) + C by FTC

for some constant C.

Perhaps the best argument is once again a geometric one.

Laisant’s formula tells us that if f (x) is continuous and strictly in-

creasing, then∫ f (b)

f (a)
f −1 (x)dx +

∫ b

a
f (x)dx = b f (b) − a f (a).

A proof without words is presented in figure 2.
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a b

f (a)

f (b)

x

y

f

area
∫ b
a f (x) dx

area
∫ f (b)
f (a) f

−1 (x) dx

area a × f (a)

total area b × f (b)

Figure 2. Visual proof of Laisant’s formula.

We can connect Laisant’s formula to the algebraic approach.

Further assume that f (x) is differentiable. Informally, consider the

points (a, f (a)) and (a+ 𝜖 , f (a+ 𝜖 )) for some a ∈ ℝ and some small

𝜖 > 0. Laisant’s formula tells us that∫ f (a+𝜖 )

f (a)
f −1 (x) dx +

∫ a+𝜖

a
f (x) dx = (a + 𝜖 ) f (a + 𝜖 ) − a f (a)

so

G ( f (a + 𝜖 )) −G ( f (a)) + F (a + 𝜖 ) − F (a)

= (a + 𝜖 ) f (a + 𝜖 ) − a f (a)

for some antiderivative G (x) of f −1 (x). Dividing both sides by 𝜖
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and taking the limit 𝜖 → 0 we get

d
dx

����
x=a

[G ( f (x)) + F (x) − x f (x)] = 0.

As this is true for all a ∈ ℝ, we see that there is some constant C such

that

G ( f (x)) + F (x) − x f (x) = C .

Letting x̃ = f (x) and rearranging terms we see that

G̃ (x̃) := x̃ f −1 (x̃) − F ( f −1 (x̃))

is an antiderivative of f −1 (x̃), which is what we expect.

Summary

In fact, taking F (x) to x f −1 (x) − F ( f −1 (x)) is called the Legendre

transform, which is of immense significance in Lagrangian / Hamil-

tonian mechanics. I encourage the reader to explore this connection!

To summarise, we draw a commutative diagram

F (x) G (y)

f (x) g (y)

f ′ (x) g ′ (y)

Legendre Transform

d
dx

d
dy

Taking the inverse

d
dx

:= f −1 (y)
d
dy

Inverse Function Theorem
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with the following relations.

Legendre: G (y) = y × g (y) − F (g (y)) + C ,

IFT: g ′ (y) = 1
f ′ (g (y)) .

As such, the inverse function theorem is about what happens if

you take the inverse then take the derivative. The Legendre trans-

form is about what happens if you take the inverse then take the

antiderivative.

References

Here is Laisant’s original paper.

• C.-A. Laisant. Intégration des fonctions inverses. Nouvelles an-
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The True Face of Hyperbolic Geometry
Gavin Jared Bala

The three geometries

Let us go back about 2300 years to ancient Greece and imagine

Euclid at work in Alexandria. Perhaps, looking over his completed

masterpiece—the Elements—he thought of the day he decided to ink

the parallel postulate on his papyrus.

Though he knew it not, with that act he divided plane geometry

into three parts, based on one difference:1

Given a line, and a point not on that line, one can draw through

that given point...

1. zero lines parallel to that given line.

2. exactly one line parallel to that given line.

3. more than one line parallel to that given line.

The second case is Euclidean geometry, that of everyday life: the

first that human knowledge grasped in its reach. Its natural model is

any flat plane.

The first case is a little more exotic. It naturally arises while inves-

tigating solid geometry, being geometry on the surface of a sphere.

Points are as they were, but lines are now great circles—geodesics on

a sphere’s surface—and they intersect in pairs of antipodal points.

1We state the parallel postulate as Playfair’s axiom.
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Moreover, between two antipodal points, there is no unique shortest

path: any meridian suffices.2

This difference from the normal behaviour of lines led the an-

cients to reject this as a truly non-Euclidean geometry, unwilling to

accept Hilbert’s tables, chairs, and beer mugs in place of points, lines,

and planes. Nonetheless, they studied spherical geometry in great

detail, and its peculiarities are familiar to all who fly from Europe

to the USA over Greenland. The first ancient Greek mathematical

treatise to survive to our day is on this geometry: On the Moving

Sphere by Autolycus of Pitane (c. 360–290 BC).

On a sphere of radius r , all triangles have an angle sum exceeding

𝜋. The larger the area, the larger their excess: the area of a spherical

triangle with angles 𝛼, 𝛽 and 𝛾 is exactly r2 (𝛼 + 𝛽 + 𝛾 − 𝜋). The

radius r is an absolute unit of length.

The third case is more vexed. Many investigators across centuries

attempted to improve on Euclid and prove the parallel axiom a

consequence of the other, less complicated ones. Spherical geometry

could be excluded as lines were bounded: but this geometry posed a

far sterner challenge to would-be refuters.

The braver ones gamely accepted the gambit, seeking a contradic-

tion in vain, but proving wonderfully counterintuitive along the way.

Particularly interesting are the results of Johann Heinrich Lambert

(1728–1777):

1. The angles of a triangle add to less than 𝜋; and the larger the

2This issue can be cured by taking a quotient, identifying pairs of antipodal points,

and studying elliptic geometry on the real projective plane instead.
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area, the larger the defect, in linear proportion.

2. There is an absolute unit of length.

3. Two lines sharing a perpendicular diverge on either side of

said perpendicular: thus, parallel lines are not equidistant. (In

spherical geometry, they converge as all lines do.)

More such properties followed, and—strikingly to Lambert’s eyes—

they tended to resemble analogous well-known properties of spheri-

cal geometry, suggesting that there was a third geometry just over the

horizon. And yet, he was still unsure: his work trails off, unfinished,

after starting another refutation attempt.

The happy ending is well-known: as was said by William King-

dom Clifford, geometry found its Copernicus to match Euclid’s

Ptolemy. In 1829-1830, Nikolai Lobachevsky’s work on hyperbolic

geometry was published. In 1832, the independent work of János

Bolyai appeared: as he wrote to his father when he discovered it in

1823, ‘out of nothing I have created a strange new universe’. We

cannot forget Carl Friedrich Gauss, who coined the very name of

non-Euclidean geometry, yet did not publish.

Nowadays, the third geometry is known as hyperbolic

(or Lobachevskian) geometry, and is a standard topic in an under-

graduate mathematics curriculum. The three geometries are the

cases of constant positive, zero, and negative curvature.

So rises the glorious edifice of mathematics. Yet one vexation re-

mains: a ‘homeland’ for hyperbolic geometry is missing. Euclidean

geometry has the plane, and spherical geometry has the sphere: but
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it is a sad theorem that the complete hyperbolic plane cannot be em-

bedded in R3. We are reduced to studying models: the Poincaré disc

model, the Poincaré half-space model, the Beltrami–Klein model—

yet this is like studying spherical geometry without ever seeing a

sphere, only various map projections. What then is the true face of

hyperbolic geometry?

Imaginary spheres

That face was known to Lambert himself!3

In his musing, Lambert noticed that the formulae of hyperbolic

geometry can be derived from those of spherical geometry—if one

boldly posits that the sphere has imaginary radius!

Consider the angular defect. On a sphere of radius r , the area of

a triangle with angles 𝛼, 𝛽 and 𝛾 is r2 (𝛼 + 𝛽 + 𝛾 − 𝜋). Substituting

r = i gives us 𝜋 − (𝛼 + 𝛽 + 𝛾)—precisely the area of a hyperbolic

triangle, if the constant negative curvature is −1!

The circumference and area of a circle of radius 𝜌 in S2 (the

unit sphere) are respectively 2𝜋 sin 𝜌 and 𝜋 sin2 𝜌; in H2 they are

respectively 2𝜋 sinh 𝜌 and 𝜋 sinh2 𝜌.

The surface area and volume of a sphere of radius 𝜌 in S2 are

respectively 4𝜋 sin2 𝜌 and 𝜋 (2𝜌−sin 2𝜌); inH2 they are respectively

4𝜋 sinh2 𝜌 and −𝜋 (2𝜌 − sinh 2𝜌).

Apparently, sinh—the imaginary counterpart of sin, expressed

3And also to Franz Taurinus (1794-1874), who found it in 1825-1826 as

‘logarithmic-spherical’ geometry.



20

as sinh x = sin ix/i—replaces sin in the hyperbolic world: thus Lam-

bert’s discovery of hyperbolic trigonometry is apropos!

The situation generalises to surfaces of any constant curvature K.

In most of the cases above, sin in the spherical formulae is replaced

by

sinK (x) =
sin (

√
Kx)

√
K

.

(It does not matter which square root we take, because sin (−z) =
− sin (z). cosK (x) is defined as the derivative of sinK (x).)

The general expression for the volume of a sphere is

1
K
𝜋 (2𝜌 − sinK 2𝜌).

Even Euclidean geometry (K = 0) joins in the fun, arising from a

well-known limit:4

sin0 x = lim
K→0

sin (
√
Kx)

√
K

= x.

As the curvature of a sphere of radius r is r−2, perhaps Euclidean

geometry appears on a sphere of infinite radius! (And notably, i−2 =

−1.)

One more example: the cosine rules in the three geometries,

with sides a, b and c opposite angles 𝛼, 𝛽 and 𝛾. As above, we list

them in the order: spherical, Euclidean, hyperbolic, with respective

curvatures +1, 0, −1. (The Euclidean version is obtainable as a

4The volume of a Euclidean sphere likewise requires taking a limit; the familiar
4
3 𝜋 𝜌

3 falls out of the cubic term in the Taylor series of sin.
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limit.) The trigonometric functions applied to the sides change with

the curvature, but those applied to the angles remain circular.

Spherical: cos a = cos b cos c + sin b sin c cos 𝛼 ,

Euclidean: a2 = b2 + c2 − 2bc cos 𝛼 ,

Hyperbolic: cosh a = cosh b cosh c − sinh b sinh c cos 𝛼.

In spherical and hyperbolic geometries, there is an absolute unit

of length, and thus similar triangles are congruent: AAA is now an

actual congruence law!5 So it is not shocking that dual cosine rules,

allowing one to solve for a side in terms of the angles, exist here.

First we give the spherical form, then the hyperbolic.

Spherical: cos 𝛼 = − cos 𝛽 cos 𝛾 + sin 𝛽 sin 𝛾 cos a,

Hyperbolic: cos 𝛼 = − cos 𝛽 cos 𝛾 + sin 𝛽 sin 𝛾 cosh a.

It is certainly convincing that hyperbolic geometry appears on imag-

inary spheres!

But how could we visualise that?

The Minkowski hyperboloid

With some relativistic trickery!

Spherical geometry takes place on the unit sphere

z2 + x2 + y2 = 1
5In general, three pieces of information are always required to narrow a triangle

down to finitely many possibilities (we cannot say determine, because of the ambiguous

case of Euclidean SSA). The issue in Euclidean space is that because 𝛼 + 𝛽 + 𝛾 = 𝜋

always, three angles are not actually three pieces of information, but are in fact only

two. This is not a problem in spherical or hyperbolic geometry.



22

and one may naturally take an origin at the north pole, (0, 0, 1).

Euclidean geometry may naturally be considered to take place

on the plane

z2 = 1

with the origin again at (0, 0, 1).

So, the unit two-sheeted hyperboloid

z2 − x2 − y2 = 1

should be a natural form for hyperbolic geometry. To preserve

connectedness, we will only use the sheet with z > 0.6

And it is so, if we use the Minkowski notion of distance rather

than the Euclidean one!7

The x and y directions are spacelike: they have a positive contri-

bution to the inner product. But the z direction is timelike, and has a

negative contribution. Explicitly, the inner product is

(ux , uy , uz) · (vx , vy , vz) = uxvx + uyvy − uzvz

The distance between two points is

d(u , v) = arcosh(−u · v)
6Resembling how we use the northern hemisphere alone to avoid the problem

of antipodal points in elliptic geometry. (Though to get a projective plane we must

additionally identify antipodal points on the equator z = 0.)
7Such a pseudo-Euclidean space is not a metric space: there are null vectors with

zero length, forming a cone that physically is the light cone of the origin. Yet many

things work in it nonetheless, such that we are moved to call the resulting notion of

distance a pseudo-metric. The hyperboloid model within Minkowski space is a subset

where distances are actually positive.
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resembling a well-known formula in spherical geometry:

d(u , v) = arccos (u · v).

Our dream comes true: geodesics on the hyperboloid are straight

lines in hyperbolic space. They take the role of great circles on the

sphere.

As two orthogonal unit vectors u and v on the sphere trace out a

great circle u sin 𝜃 + v cos 𝜃 , so an orthogonal spacelike unit vector u

with u · u = 1 and timelike unit vector v with v · v = −1 trace out a

hyperbolic geodesic u sinh 𝜃 + v cosh 𝜃 .

The familiar models of the hyperbolic plane are projections of

this hyperboloid, corresponding to the map projections we use for

the sphere!

• To get the Poincaré disc model from the Minkowski hyper-

boloid, we look at the hyperboloid from (0, 0, −1); this model

is analogous to stereographic projection of a sphere. See figure

1.

• The Beltrami–Klein model appears looking at the hyperboloid

from (0, 0, 0); it is analogous to gnomonic projection of a

sphere.8

8These models—Beltrami–Klein for H2 and gnomonic for S2—are especially

important because they map straight lines to straight lines. Hence, they are what you

would actually see if you were magically transported to universes with such geometries.

There is a strange irony here: because parallel lines diverge in hyperbolic space but

converge in elliptic space, hyperbolic space looks finite to an internal observer used to

Euclidean depth perception, but elliptic space looks infinite! An object at the antipodal

point is seen from every direction at distance 2𝜋, creating an impressive view.
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Figure 1. Projection of the Minkowski hyperboloid to the Poincaré

disc model. One geodesic and its projection is shown. By Wikipedia

user Selfstudier.

• Looking at the hyperboloid from (0, 0, −∞) gives the Gans

model; it is analogous to orthographic projection of a sphere.9

Three geometries, three conics?

There remain differences between the three geometries. Most ob-

viously, the sphere is bounded, but the Euclidean and hyperbolic

planes are not. Yet even in their differences they show analogies!

Consider what one must add to let all lines intersect. Elliptic

geometry needs nothing added. Euclidean geometry needs a line at

9For more such correspondences, see the video of Zeno Rogue (Eryk Kopczyński):

https://www.youtube.com/watch?v=H7NKhKTjHVE. Check out his game Hyper-

Rogue (https://roguetemple.com/z/hyper/) as well: the properties of H2 are

deeply used in the gameplay! It is also possible to play in R2 or S2, and in any

of the eight Thurston geometries in three dimensions: S3, E3, H3, S2 × R (surface of a

four-dimensional spherinder), H2 × R, and three more exotic ones.
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Figure 2. The green lines are limit parallel to the blue line. The

magenta line is ultraparallel to the blue line. By Wikipedia user

Tosha.

infinity (familiar from projective geometry). Hyperbolic geometry

needs not only the ideal points on the boundary of the Poincaré disc

(where limit parallel lines meet – they get asymptotically closer to

each other, within any finite distance, but never touch), but also the

ultra-ideal points outside it (where ultraparallel lines meet; they always

keep a minimum positive distance from each other). The locations

of ideal and ultra-ideal points are clear on the Beltrami–Klein model,

where geodesics are drawn as Euclidean lines.

Now think of the conics that the geometries are named after!

(Euclidean geometry is occasionally called parabolic.)

Consider circles in each projectively completed geometry. In

elliptic geometry there are only circles: in Euclidean geometry lines

are degenerate circles with infinite radius; but in hyperbolic geome-

try, a circle passes through other stages first, going through horocycles

(limit circles) and hypercycles (equidistant curves, i.e. the locus of
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all points equidistant to a given line) before it becomes a line. A

horocycle is simultaneously a circle whose centre has receded to

infinity, and also an equidistant with the guiding line at infinity. See

figure 2.

On the Minkowski hyperboloid, these may be seen as intersec-

tions of the hyperboloid with a plane. If the plane is tilted from

the horizontal at an angle less than 𝜋
4 (i.e. its normal is timelike),

the intersection is a circle; if equal to 𝜋
4 (a null or lightlike normal),

a horocycle; if greater (a spacelike normal), a hypercycle. Their

projections on the Poincaré disc are respectively circles not touching,

tangent to, and secant to the boundary.

Another analogy shall be left for consideration. In elliptic ge-

ometry translations and rotations are one; in Euclidean geometry

translations are limit rotations around infinity. What happens in

hyperbolic geometry?

Three geometries, three complex numbers?

Finally, a lesser-known triad.

We all know the complex numbers: they are the real numbers,

plus a square root of −1, which we call i.

i2 = −1.

But there are two other lesser-known systems of two-dimensional

numbers. One is the dual numbers: the reals, plus a nonzero square

root of 0 called 𝜖 :

𝜖 2 = 0.
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The other is the split-complex numbers (or double numbers), where we

add a nonreal square root of 1, called j:

j2 = +1.

Any two-dimensional real unital (i.e. having a multiplicative identity)

algebra10 is isomorphic to one of these three as a ring.

Mimicking the derivation of Euler’s formula recovers the gener-

alised sines and cosines from the three geometries:

eix = cos x + i sin x ,

e𝜖 x = 1 + 𝜖 x ,

e jx = cosh x + j sinh x.

What’s going on here? How far does complex analysis generalise?

And how do dual numbers relate to infinitesimals?

References and further reading

For more on the Minkowski hyperboloid model:

• Reynolds, W. F. (1993). Hyperbolic Geometry on a Hyperboloid. The

American Mathematical Monthly, 100(5), 442-455.

For more on Lambert’s work:

• Papadopoulos, A. & Théret, G. (2014). Hyperbolic geometry in the

work of Johann Heinrich Lambert. Ganita Bharati (Indian Mathematics):

10Traditionally, such structures in any dimension are called hypercomplex numbers.

Interesting examples arise from the Cayley–Dickson construction and as Clifford

algebras.
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ved-sp.pdf
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Geometries. Mathematics and Its Applications, vol 581. Springer,

Boston, MA.
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ADE classification but not Lie algebras
Yourong Zang

John McKay’s observation

It is a well-known result that simple Lie algebras can be classified by

Dynkin diagrams. Those corresponding to 𝔰𝔩n+1, 𝔰𝔬2n and exceptional

Lie algebras 𝔢i for i = 6, 7, 8 are simply-laced (n corresponds to the

number of nodes).

An Dn

E6 E7 E8

Yet it is sometimes lesser known that these graphs of type A, D, E

naturally correspond to finite subgroups of SU2 (ℂ). The ancient

Greek mathematicians already knew there were only five regular

polyhedra: tetrahedron, cube, octahedron, dodecahedron, and icosa-

hedron. One might consider groups of rotations on these platonic

solids as finite subgroups of SO3, which can be pulled back to finite

subgroups of SU2 via a homomorphism SU2 → SO3 with kernel

{±I}. Thus it is not unreasonable for the reader to assume there

exists some classification of the finite subgroups of SO3 or SU2. How-

ever, it was not until the late 19th century that they were completely

classified. Felix Klein studied these finite groups extensively and was

known to be the first person who classified them in [1].
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Theorem (Klein) . A finite subgroup of SU2 (ℂ) is conjugate to one of the

following types:

1. Type An−1: a cyclic group of order n,

2. Type Dn+2: a binary dihedral group BDn ,

3. Type E6: the binary tetrahedral group BT ,

4. Type E7: the binary octahedral group BO,

5. Type E8: the binary icosahedral subgroup BI .

We present their generators in the following table.

Type Generators z

An−1
[ z 0
0 z−1

]
e2𝜋i/n

Dn+2
[ z 0
0 z−1

]
,
[
0 1
−1 0

]
e𝜋i/n

E6
[
i 0
0 −i

]
,
[
0 1
−1 0

]
, 1√

2

[
z z3
z z−1

]
e𝜋i/4

E7
[
0 1
−1 0

]
, 1√

2

[
z z3
z z−1

]
,
[ z 0
0 z−1

]
e𝜋i/4

E8
[
z3 0
0 z2

]
,
[
0 1
−1 0

]
, 1√

5

[
−z+z4 z2−z3
z2−z3 z−z4

]
e2𝜋i/5

Table 1. Generators of finite subgroups of SU2 (ℂ)
.

Nonetheless, Klein’s classification is unrelated to the aforemen-

tioned Dynkin diagrams of type A, D, E. The correlation was much

later observed by John McKay in [2]. Given a finite subgroupG of

SU2, we may study its representations, i.e., homomorphisms from

G to the group of isomorphisms GL(V ) on some vector space. If

you have taken a first course in group representation theory, you
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probably know any representation of G decomposes into a direct

sum of copies of irreducible representations, which are representa-

tions not “containing” any smaller nonzero representations. I’m

sure in this course you also learned that there are only finitely many

irreducible representationsV1 , . . . ,Vn ofG up to isomorphisms (we

here include the trivial representation). There is also an obvious rep-

resentationV0 = ℂ2 ofG given by 𝜌 : G ↩→ GL(V0) sending a matrix

inG to itself inGL(V0). Decomposing the tensor product ofV0 and

each Vi , we get a sum V0 ⊗ Vi = ⊕ jV
⊕ri j
j . McKay defined a graph

using these decompositions and made the following observation:

Definition. The McKay graph Γ(G) ofG is a graph in which each

node corresponds to an irreducible representation ofG, and nodes

i , j are connected by ri j edges.

Theorem (McKay correspondence) . The mapG ↦→ Γ(G) is a bijection

between (conjugate classes of) finite subgroups of SU2 and the extended

Dynkin diagrams respecting their types

Ãn D̃n

Ẽ6 Ẽ7 Ẽ8

Let us verify this forG = Cn the cyclic group of order n corre-

sponding to the type An−1. This group is generated by the diagonal

matrix diag(𝜉 , 𝜉 −1) where 𝜉 = e2𝜋i/n. It has irreducible representa-

tions 𝜌m : 𝜉 i ↦→ 𝜉mi for m = 1, . . . , n and clearly the representation
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V0 is a direct sum 𝜌1⊕ 𝜌n−1. You may use the fact that 𝜌i ⊗ 𝜌 j = 𝜌i+ j ,

and that tensor product distributes over direct sums to show that

Γ(G) indeed has type An−1. I encourage readers who are familiar

with character theory to verify the above for other subgroups. One

can in fact prove the correspondence using pure algebra and charac-

ter theory. But this might be a bit tedious for geometers. In the rest

of this article, we will go over a beautiful geometric theory that leads

to the same result.

Resolving Klein singularities

Recall it was Klein who classified finite subgroups of SU2. Here is

what I did not tell you: Klein actually did much more than this. He

associated each type of finite group with a unique surface in ℂ2. Still,

we start with a finite subgroupG in SU2. The matrices inG act on

ℂ2 and I’m sure you have done a lot of these in your first linear

algebra course. If we consider the algebra of polynomials in two

variables ℂ[x , y] as the algebra of functions on ℂ2, there is an action

of G on ℂ[x , y]: let g =
[ g11 g12
g21 g22

]
∈ G, we define (g · f ) (x , y) to

be ( f ◦ g−1) (x , y) = f (g22x − g12y , −g21x + g11y). We denote by

ℂ[x , y]G the set of invariant polynomials. You can go ahead and

show it is an algebra. You probably wonder if there is an explicit

description of it. Let’s takeG = Cn the cyclic group of order n as an

example. Invariant polynomials are sums of invariant monomials in

x , y. A monomial xayb is invariant under the generator diag(𝜉 , 𝜉 −1)
(still 𝜉 = e2𝜋i/n) if and only if 𝜉 b−a = 1, meaning b − a ≡ 0 (mod n).
Thus, ℂ[x , y]G is the algebra ℂ[xn , yn , xy]. If we consider the map

ℂ[x , y , z] → ℂ[x , y]G defined by x ↦→ xn , y ↦→ yn and z ↦→ xy, we
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get an isomorphism ℂ[x , y]G � ℂ[x , y , z]/(zn − xy).

Regardless of your knowledge of naive algebraic geometry, you

can intuitively see that the quotient ℂ[x , y , z]/(xy−zn) is the algebra

of polynomial functions on the surface in ℂ3 defined by xy − zn = 0.

In fact, Klein showed that

Proposition. The finite subgroup of SU2 of type

1. An−1 corresponds to the surface xy − zn = 0,

2. Dn+2 corresponds to the surface x2 + z(y2 − zn) = 0,

3. E6 corresponds to the surface x2 + y3 + z4 = 0,

4. E7 corresponds to the surface x2 + y3 + yz3 = 0,

5. E8 corresponds to the surface x2 + y3 + z5 = 0.

We call these surfaces Klein singularities.

From now we denote by ℂ2/G the Klein singularity associated

withG (if the reader is familiar with Mumford’s geometric invariant

theory, then they probably realize we are just constructing an affine

quotient for the action of G on ℂ2). The reader might be curious

about the term ‘singularity’. Indeed, the point (0, 0, 0) in each

surface above is a singularity. Vaguely, we can’t do calculus as usual

at this point on the surface. To resolve these singularities, we need

some nice (in our case smooth complex) surfaces that almost look

like ℂ2/G.

Definition. A resolution of the singularity 0 = (0, 0, 0) is a smooth

complex surfaceY equipped with a proper morphismY → ℂ2/G
such that the restriction 𝜋 : 𝜋−1 (ℂ2/G\{0}) → ℂ2/G\{0} is an
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isomorphism.

If the terms ‘proper morphism’ and ‘isomorphism’ sound daunt-

ing to you, you can intuitively picture them as surjections and bijec-

tions. The preimage 𝜋−1 (0) of 0 is called the exceptional divisor. We

are mainly interested in a resolution that is minimal, i.e., a resolu-

tion 𝜋 : �ℂ2/G → ℂ2/G such that every resolution of ℂ2/G factors

through 𝜋. If a minimal resolution of ℂ2/G exists, the exceptional

divisor is a connected union of components Ei isomorphic to ℙ1

and self-intersect with an intersection number of −2. Patrick du Val

proved the following classification of singularities in [4].

Theorem (Du Val) . Suppose there is a minimal resolution �ℂ2/G of ℂ2/G
with an exceptional divisor ∪iEi . Construct the graph Γ′ (G) using the

following rules: add a node i for each component Ei in the exceptional

divisor and add an edge between nodes i , j if Ei intersects E j . Then Γ′ (G)
is a regular Dynkin diagram of the same type asG.

Note here we use regular Dynkin diagrams. Those in the pre-

vious McKay correspondence are extensions of them. They can be

made consistent if we only use nontrivial irreducible representations

ofG to build the McKay graphs. The theorem can be best illustrated

by figure 1 from [3].

The surface on the left is x2+z(y2−z2) = 0 of typeD4 (draw it on

your computer!), and the thing on the right is a minimal resolution.

Note that the singular point in the center of the surface is resolved to

four small circles on the right (which are just ℙ1). Their intersections

precisely produce the Dynkin diagram of type D4

You might find the previous few paragraphs unclear; there seem



36

Figure 1. The surface x2 + z(y2 − z2) = 0 on the left and its minimal

resolution on the right.

to be too many ideas and constructions involved. So I will demon-

strate a simple case using a fairly approachable method of resolution.

If you have some experience in algebraic geometry or complex ge-

ometry, you probably would’ve guessed it by now. We will blow-up

the singularity. Namely, consider the space ℂ̃3 ⊆ ℂ3 ×ℙ2 defined by

ℂ̃3 = {((x , y , z) , [z0 : z1 : z2]) : (x , y , z) ∈ [z0 : z1 : z2]}

where a point [z0 : z1 : z2] ∈ ℙ2 is considered as a line in ℂ3. Let

p : ℂ̃3 → ℂ3 be the projection to the first coordinate. Now for

any closed surface Y ⊆ ℂ3, we blow up Y at the origin by taking

Ỹ = p−1 (Y\0). Despite the tilde notation, blowing up at a point does

not guarantee a resolution. But for Klein singularities, we can obtain

a minimal resolution by successively blowing up at singular points!

We will end this article by computing the blow up of the simplest

surface Y of type A1 and constructing the corresponding Dynkin

diagram. Recall that the algebra of functions on Y is given by

ℂ[x , y , z]/(xy − z2). Blowing the surface up at zero we obtain the
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spaceU ∪V where

U := {((x , y , z) , [x : y : z]) ∈ ℂ3\{0} × ℙ2 : xy − zn = 0},

V := {((0, 0, 0) , [a : b : c]) : ab − c2 = 0}.

This space can be covered by smooth surfaces, so we don’t need

to blow up again (but we need to blow up again even for A2). The

exceptional divisor on the right is a conic in ℙ2, hence isomorphic to

ℙ1. Therefore, the Dynkin diagram ofY is given by only one node.

Too simple? This is the furthest we can reach without better tools.

The theory of resolutions is very rich. There are so many ways

one could construct a resolution. To name a few: iterated blow ups,

Hilbert schemes, quiver varieties, etc. Each of them is an extremely

interesting and deep object to study. If you find the simple example

above interesting and unsatisfying, you can read about blow ups of

xy − zn = 0 and see if you can derive the corresponding Dynkin

diagrams.

We witnessed an ADE classification and went through some

simple examples and computations. But this is only one example of

ADE classifications. There are many others that are open for you to

explore. The techniques we used also indicate a connection between

representation theory and geometry. A modern generalization of

the McKay correspondence is the study of derived categories of

quasicoherent sheaves on the quotient ℂ2/G and quotients in higher

dimensions. Classification is only a starting point. The true nature

of simple things lies in sophisticated but elegant theories.
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The Ising Model and Phase Transitions
Ghazi Zein

Introduction

Many proofs are adapted from Friedli and Velenik’s book on Statistical Mechanics.

In 1895, Curie studied the phenomenon whereby a magnet

shifts from ferromagnetism (ability to spontaneously magnetise) to

paramagnetism (magnetises only in the presence of an external field)

once heated above the Curie temperature. The shift is sharp, not

gradual. Later on, to explain this phenomenon, Lenz proposed a

first model, which was then further developed and refined by his

student Ising in his 1925 paper into what is now known as the Ising

model.

What is a phase transition? There are two radically different

ways of defining a first order phase transition: either by viewing it as

the non-differentiability of a pressure function, or by viewing it as

the non-unicity of a Gibbs state. In this article we shall propose two

seemingly different definitions for phase transition, and prove that

they are totally equivalent.



41

The Ising Model

Definitions

We start with the finite volume Ising model with free boundary

conditions. We will restrict ourselves to Λ ⋐ ℤd (Λ is a finite subset

of ℤd). d here is the dimension of interest.

Definition. Configurations of the Ising model on the infinite lattice

are given by Ω := {+1, −1}ℤd .
A configuration of the Ising model in Λ with boundary condition 𝜂

is an element of

Ω
𝜂

Λ
:= {𝜔 ∈ Ω | 𝜔i = 𝜂i , ∀i ∉ Λ}.

Figure 1. A possible configuration.

Definition. To each configuration, we associate its energy, given by

the Hamiltonian

HΛ;𝛽 ,h (𝜔) := −𝛽
∑︁

(i , j )nearest neighbours

𝜎i (𝜔)𝜎j (𝜔) − h
∑︁
i∈Λ

𝜎i (𝜔)

where 𝜎i ∈ {+1, −1} is the spin at node i, 𝛽 ∈ ℝ≥0 is the inverse

temperature, and h ∈ ℝ is the external field strength.
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Definition. The Gibbs distribution in Λ with boundary condition 𝜂 ,

at parameters 𝛽 and h, for all 𝜔 ∈ Ω
𝜂

Λ
, is given by

𝜇
𝜂

Λ;𝛽 ,h (𝜔) :=
1

Z𝜂

Λ;𝛽 ,h

exp(−HΛ;𝛽 ,h (𝜔)).

The normalisation constant

Z𝜂

Λ;𝛽 ,h :=
∑︁
𝜔∈Ω𝜂

Λ

exp(−HΛ;𝛽 ,h (𝜔))

is called the partition function with boundary condition 𝜂 .

Magnetisation

We now build up the first definition of a phase transition.

Definition. In the thermodynamic limit, the pressure is defined by

𝜓 ( 𝛽 , h) := lim
Λ⇑ℤd

1
|Λ| logZ

#
Λ;𝛽 ,h

We can show that the pressure is well defined, independent of

the sequence Λ ⇑ ℤd and of the type of boundary condition.

To understand why we named this function pressure, we can

interpret the +1 spins as particles and the −1 spins as vacancies,

hence creating a ‘pressure’.

Definition. The magnetisation density is defined by

m#Λ ( 𝛽 , h) := ⟨mΛ⟩#Λ;𝛽 ,h ,

and the average magnetisation density is defined by

m( 𝛽 , h) := lim
Λ⇑ℤd

m#Λ ( 𝛽 , h)
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where mΛ = 1
|Λ |

∑
i∈Λ 𝜎i is the magnetization density and ⟨·⟩ is the

expectation with respect to the Gibbs measure.

There is a strong link between pressure and magnetisation.

Theorem 1. For all 𝛽 ≥ 0 and h ∈ ℝ:

𝜕𝜓

𝜕h+
( 𝛽 , h) = m+ ( 𝛽 , h) , 𝜕𝜓

𝜕h−
( 𝛽 , h) = m− ( 𝛽 , h).

We see that if there is no phase transition, then as h ↑ 0 or h ↓ 0,

the derivatives coincide:

m( 𝛽 , h) = 𝜕𝜓

𝜕h
( 𝛽 , h).

Intuitively, a shift from ferromagnetism to paramagnetism means

the magnetisation graph becomes discontinuous at h = 0, i.e.

lim
h↓0

m( 𝛽 , h) ≠ lim
h↑0

m( 𝛽 , h).

This is because you would obtain a ‘residual’ magnetic field, i.e. when

there is no external field (h = 0), you have spontaneous magnetisa-

tion.

With all this in place, we are now ready for the first definition of

phase transition.

Definition. The pressure 𝜓 exhibits a first-order phase transition
at ( 𝛽 , h) if h ↦→ 𝜓 ( 𝛽 , h) fails to be differentiable at that point.

Infinite-Volume Gibbs States

Although magnetization seems more intuitive, it proves to be more

difficult to work with in practice. We can leverage the properties of
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Gibbs states to build an easier and more comprehensive method of

finding phase transitions.

We start off this section by defining a very useful tool, local func-

tions.

Definition. A function f : Ω → ℝ is local if there exists Δ ⋐ ℤd such

that f (𝜔) = f (𝜔′) as soon as 𝜔 and 𝜔′ coincide on Δ. The support

of f is defined as the smallest such set Δ.

It is also useful to know that local functions possess summation

representations in terms of products of spins over subs-sets of their

support. This is very useful for proofs because it enables us to start

with smaller cases and then generalise to the entire function.

Now that we have defined local functions, we can also define a

Gibbs state.

Definition (Gibbs state at ( 𝛽 , h)) . Let Λn ↑ ℤd , (#n)n≥1 be a se-

quence of boundary conditions. The sequence of Gibbs distributions

(𝜇#n
Λn ;𝛽 ,h

)n≥1 converge to the Gibbs state ⟨·⟩ at ( 𝛽 , h) if and only if

limn→∞⟨ f ⟩#nΛn ;𝛽 ,h = ⟨ f ⟩ for every local function f.

We can construct two translation invariant Gibbs states, namely

⟨·⟩−
𝛽 ,h and ⟨·⟩+

𝛽 ,h, where any other Gibbs state is squeezed in between

the two (they are lower and upper bounds respectively). This is

important, as the following theorem can be proved:

Theorem 2. There exists a unique Gibbs state at ( 𝛽 , h) ⇔ ⟨𝜎0⟩+𝛽 ,h =
⟨𝜎0⟩−𝛽 ,h.

Sketch of proof. (⇐) We already have ⟨𝜎0⟩+𝛽 ,h ≥ ⟨𝜎0⟩−𝛽 ,h. The other
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inequality can be shown using the Fortuin–Kasteleyn–Ginibre in-

equality.

(⇒) This is straightforward. □

We are now ready for the second definition of phase transition.

Definition. If at least two distinct Gibbs states can be constructed

for a pair ( 𝛽 , h), we say that there is a first-order phase transition at

( 𝛽 , h).

Characterisation of Uniqueness

Now we introduce a unifying theorem.

Theorem 3. h ↦→ 𝜓 ( 𝛽 , h) is differentiable at h0 if and only if there exists

a unique Gibbs state at ( 𝛽 , h0).

Sketch of proof. From Theorem 1, 𝜕𝜓

𝜕h ( 𝛽 , h) exists if and only if

m+ ( 𝛽 , h) = m− ( 𝛽 , h). If we show that m+ ( 𝛽 , h) = ⟨𝜎0⟩+𝛽 ,h and

m− ( 𝛽 , h) = ⟨𝜎0⟩−𝛽 ,h, then this theorem follows from Theorem 2.

We will now deal with the + case. The − case can be dealt with

in a similar fashion. It can be shown that

⟨𝜎0⟩+𝛽 ,h = ⟨mΛn ⟩+𝛽 ,h ≤ ⟨mΛn ⟩+Λn ;𝛽 ,h ≤ ⟨𝜎0⟩+B(k);𝛽 ,h + 2
|B(k) | |𝜕inΛn |

Λn

where B(k) := {−k , ..., k}, and we can then use the squeeze theorem

for n → ∞ to conclude. □
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Outlook

So what have we demonstrated? We started off with some intuitive

physical descriptions of a spin-lattice system and set up the first

definition of phase transition with the tools we had available. We

then leveraged powerful statistical tools to define Gibbs measures

and Gibbs states, thereby creating a robust framework to work with

our system: indeed, when we are dealing with vast quantities of par-

ticles (think Avogadro’s number), we cannot account for individual

particles anymore.

There is plenty more to talk about: the fact that no phase transi-

tion exists in 1D, that the 2D Ising model does indeed have a phase

transition, higher dimensional models, new advancements using per-

colation theory (see Hugo Duminil-Copin, one of the latest Fields

medal winners). I highly recommend exploring this rich subject!

Figure 2. A preferential Ising model after 10 iterations.
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Dictionary of Received Mathematical Ideas
Tian Long Lee

Because I do not hope to turn

Desiring this man’s gift and that man’s scope

I no longer strive to strive towards such things

—T.S. Eliot

Ours is a curious subject. It has curious conventions. For

instance, the greenhorn mathematician feels a tinge of

disappointment when, on opening a mathematical paper,

they see that it does not consist solely of one monumental

theorem and its gargantuan proof, but is instead subdivided

into several smaller statements—definitions, theorems,

examples, etc. But the veteran knows that this subdivision

is necessary—the mind of a mathematician is necessarily

bounded, and we must understand theories piecewise if we

are to understand them at all. Those smaller statements

are the many necessary bricks upon which the grand

mathematical results—the crowning domes—are to be placed.

Below is a list of the most common such statements, in no

particular order, with some elucidating observations and

helpful discussions for the mathematician, expert or novice

alike.

Definition. A precise explanation of the mathematical meaning

of a word, phrase, or symbol. Typically these are the first things
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the reader sees in an article or set of lecture notes. Every field

of mathematics is based on good and correct definitions, and to

formulate such definitions is no mean feat. It might take decades or

centuries for mathematicians to come up with a definition that can

be expressed in a single line.

Notation. From the mathematical laity one occasionally hears

that mathematics is a mere play of symbols and funny squiggles. Be

that as it may, a good author will always establish at the beginning of

their work the notation that they will employ consistently throughout

their work. Some advice: use triple subscripts because you will or

you must, not because you can; avoid the quantifiers ∀ (for all), ∃
(there exists) when writing discursively; and never give multiple

meanings to the same variable. The least a mathematician can do is

clean up after themself.

Lemma. A mathematical statement that is used in proving other

statements. Ideally, it should be true. For authors with a more liter-

ary (or pretentious) bent, lemmata is the correct Greek plural. It is a

rather sad fact that many of the most important mathematical results

are branded with the lowly and utilitarian-sounding designation of

‘lemma’. Urysohn’s Lemma and Bézout’s Lemma are fundamental

in the respective fields of general topology and ring theory. And

without the Snake Lemma, where would our poor homology groups

go? Some lemmas, like Ito’s, have birthed whole branches of mathe-

matics, but alas! there is no changing their name now...

Example. Hilbert was right when he insisted to start always with

the simplest examples. Examples serve to instantiate definitions and

theorems. Generally they do not add to the ‘plot’ of a mathemati-
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cal treatise—they are not logically necessary—but should provide

intuition for mathematical concepts. In fact, examples should come

before the big theorems and definitions. We should not abstractly

define an object like a ring and then go about finding examples that fit

it; instead, our intuitions are better served by showing that matrices,

integers, polynomials all share similar properties when we add and

multiply them. They all have similar structures, and it is this struc-

ture we call a ring. We might do worse than to agree with Aristotle

when he writes that the individual comes before the abstract—after

all, the concrete examples are the reason that the abstract definitions

exist! That is the natural path that mathematics has always taken, and

it is the natural path that students learn about difficult mathematical

concepts. Would that more educators knew that!

Non-Example. The dual of examples, non-examples are used

to disprove statements which might at a first glance seem reasonable,

but are in fact not true. In other places, non-examples are used to

show that a certain assumption in a theorem is in fact necessary.

All Riemann-integrable functions on the unit interval [0, 1] are

bounded, and just after the reader first encounters this, they are

distraught to discover that the converse is not true: there do exist

bounded functions on [0, 1] which are not Riemann-integrable!

This is demonstrated by a non-example.

Axiom. A mathematical statement that is assumed to be true, to

serve as a premise or starting point for further reasoning and deduc-

tions. It is assumed to be true, but is it? Who cares—mathematicians

will take it to be so. Remember that famous dictum: ‘the Axiom

of Choice is obviously true, the Well-Ordering theorem obviously
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false; and who can tell about Zorn’s Lemma?’. Whatever the case

may be, these controversial statements are given the designation of

axiom, ensuring their philosophical weight.

Exercise. The bane of a student’s academic life. Is there anything

worse than trawling for hours through lecture notes or a textbook,

toiling steadily on as the midnight oil burns, and coming across,

as your eyes droop, the phrase ‘the proof of this theorem is left as

an exercise’? The phrase is often employed by intelligent lecturers

wishing to avoid having to write up a tedious proof in LaTeX. That

being said, there may be something to the idea that solving exer-

cises by themself aids in the positive development of the student’s

mathematical abilities.

Proposition. A catch-all term for statements which are not im-

portant enough to be theorems, nor useful enough to be called lem-

mas. Often propositions collect properties of a certain mathematical

object, or are semi-interesting standalone results, but not interesting

enough to deserve of the label ‘theorem’. Like lemmas, if you write

one, it better be true.

Corollary. A true statement deduced from another result. The

reader will often breathe a sigh of relief on reading the word ‘Corol-

lary’: these tend to be short, simple, and satisfying deductions that

follow quickly from a given theorem or proposition. This relief

is sometimes confounded, however, when to the reader’s chagrin

they discover that the corollary requires more work than previously

thought, and that it is not an immediate logical consequence of the

result that precedes it.
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Remark. An observation which brings attention to a certain issue

that is not strictly relevant to the logical flow of the text, but to which

the author may wish to refer later. Like examples, remarks may be

used to offer motivation, by mentioning practical applications of a

given concept, by bringing to the fore pitfalls that might ensnare the

unsuspecting reader, or by justifying a seemingly circuitous route at

a certain point of the text.

Comment. Usually less helpful and less pertinent than a remark,

a comment serves to provide a commentary or contextual informa-

tion about a mathematical idea, proof, or result. Sometimes, if the

author is feeling bold, a comment may even include a joke or a ‘fun’

historical fact. Fact: Did you know that Galois died in a duel at the

age of 20? Joke: What does the B in Benoît B Mandelbrot stand for?

Answer: Benoît B Mandelbrot.

Conjecture: If the reader is lucky enough to be at the cutting

edge of a mathematical field, they will in their readings occasion-

ally come across the word ‘conjecture’. A conjecture is an assertion

that is thought to be true but that is yet to be proved. Of course,

sometimes they turn out to be false. Some notable conjectures: the

Riemann Hypothesis, the Twin Prime Conjecture, the Collatz Con-

jecture. When might these be solved? Next year? Next millennium?

One feels a sigh of grandeur on reading or pronouncing the word

‘conjecture’—one thinks of mountains yet to be climbed, or jungles

unexplored. A great conjecture is like the moon that shows the dark-

ness that it cannot dispel—or better, it serves as the sole lodestar

dimly guiding the course of a whole branch of mathematics.

Proof. A proof is a mathematical demonstration of why a state-
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ment is true. Mathematics is a difficult subject. It is made all the

more difficult by the requirement of having to prove every assertion

that one makes. On the subject of proof I can do no better than to

quote the great G. H. Hardy: In great proofs ‘there is a very high

degree of unexpectedness, combined with inevitability and economy.

The arguments take so odd and surprising a form; the weapons used

seem so childishly simple when compared with the far-reaching

results; but there is no escape from the conclusions.’ Depending on

the author’s aesthetic inclinations, proofs may end with either ‘QED’

or a square. □

Theorem. A theorem is an important statement that has been

proved to be true. Like in the case of lemmas, some theorems

are straightforwardly named: the Open Mapping Theorem (if a

bounded linear operator between Banach spaces is surjective then

it is an open mapping) or the Prime Ideal Theorem (every proper

ideal is contained in some prime ideal). Others are rather more sug-

gestive: the Hairy Ball Theorem, asserting that there does not exist

a non-vanishing continuous tangent vector field on the n-sphere

for even integers n—it has the interpretation that given a sphere

with hairs all over it, it is impossible to comb the hairs such that

all the hairs lay flat: at least one hair must be sticking straight up.

Some great theorems are named after great eponyms—

Tychonoff’s, Euclid’s, Dirichlet’s. These mathematicians strove and

shed blood, sweat, and tears so that we can say with certainty that

these theorems are true, and for all their toil they are rewarded by

having their names writ into eternity. But some mathematicians

get it lucky: Fermat’s Last Theorem was manifestly not proven
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by Pierre de Fermat; the Heine-Borel Theorem was proved only

by Borel, not by Heine. In any case, named theorems, whether

named correctly or incorrectly, are often central to a given branch

of mathematics, or a monument of human accomplishment in

their own right. The proof of Pythagoras’ Theorem must rank

with Beethoven’s 9th Symphony, Shakespeare’s Hamlet, and Botti-

celli’s Venus as among the supreme achievements of human history.

These named theorems are generally few and far between—in

mathematical textbooks and articles, most results carry with them no

grand title, no monumental weight. Hardy writes that ‘the noblest

ambition is that of leaving behind something of permanent value’,

but the sobering truth is that the work of the mathematician is rarely

that glamorous. Most theorems that the reader will come across are,

in the grand scheme of events, small, insignificant, and destined to

be forgotten by most, if not all, subsequent mathematicians. But

the effect of those theorems is incalculably diffusive: for the growing

good of mathematics is dependent on unhistoric works; and that

you and I can discover such elegance and beauty in the realm of that

subject is half owing to those unnamed mathematicians, who lived

faithfully a hidden life, and rest in unvisited tombs.



55



56

Breaking Chaos
Nicholas Hayes

I awake in a cold sweat,

my eyes tracking the lines traced by these strange attractors:

fractal hypnosis.

In the heart of the chaotic realm,

where order emerges from tumultuous dance,

precision symphonies swirl around me in

deterministic confusion,

predictable yet intractable.

I navigate the labyrinth,

each step calculated,

each step perturbing.

Yet as I grasp the threads of order—

they sand-slip through my fingers,

leaving me stranded, no steady-state returnable

from these minor deviations at the crux of

instability.

A solitary traveler, I find

rhythm in the madness,

solace in patterned diffusion.

Previous voyages—commanded by

stochastic waters at the helm—

left me journey-full and directionless,
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supreme randomness restricting my expectations,

a posteriori knowledge synthetically estimated.

I trek on, straining to spot trails of

forbearing explorers.

I whisper their names softly:

Lyapunov, Mandelbrot, Lorenz,

Feigenbaum, Turing, Libchaber,

Kuznetzov, Shaw, Strogatz.

They whisper back:

There is still beauty to be found.

Go forth, unravel the tapestry.
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Is Visual Art Mathematical?
Siddiq Islam

Everyone loves to connect mathematics with music. It is a well-

established concept by now. Musicians’ brains are compared to

mathematicians’ brains. We revel in Bach’s meticulous canons, aug-

mentations, and retrogrades, which can be thought of like trans-

lations, stretches, and reflections as though the music were on a

Cartesian graph (for instance in his Crab Canon). There is even a

‘math rock’ genre (although unconventional). While music is viewed

as having inherently mathematical aspects, the opposite is often said

of visual art. Drawing, painting and sculpture are thought of as the

antithesis of rigid mathematics. They capture fluid beauty and hu-

man emotions that could not be defined by equations. This leads

to the question: could visual art be linked to mathematics the same

way music is?

A link that may come to mind is the golden ratio. Dubbed in

Renaissance times ‘the Divine Proportion’, it is supposedly exhibited

in artworks such as Da Vinci’s Mona Lisa and The Last Supper, as well

as many others. Modern photographers might use a golden spiral

to compose their pictures and legend has it the most beautiful faces

have eyes, noses and mouths aligned in this magical ratio. Even

galaxies and shells grow in ‘golden spirals’. Unfortunately, the beauty

of the golden ratio is probably only a mathematical one. Online, we

find golden rectangles and spirals superimposed onto Renaissance

paintings quite crudely and seemingly at random. As for the shells
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and galaxies, they can produce logarithmic spirals, but are never in

the exact ratio (and are in fact usually quite far off). Photographers

may use it in their photographs, but so many beautiful pictures do

not require mathematical levels of precision and people certainly do

not need to conform to such a bizarre beauty standard in order to

look good! Whilst Da Vinci did know about the golden ratio and

used it in his lovely mathematical diagrams, he did not need it for

his art. So, can artists do without mathematics, then?

When looking at medieval art, we find it disproportionate and

flat, as though everyone is facing the wrong way. By the Renaissance,

artists were using a trick to aid composition still taught in art class

today, which is to pick a vanishing point at infinity where all lines

converge. This tackles the foreshortening effect that the farther

things get from the viewer, the smaller they appear (Figure 1).

Thus, geometry can help us depict things more realistically. Take

another example. A wall in a room is a rectangle made of straight

sides, so the corners should appear as right angles. However, when

we look at the corners of a room, the angles do not appear to be 90

degrees, but rather slightly larger (Figure 2).
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Figure 1. Jesus’s face is placed at the vanishing point in The Last

Supper, so it becomes the centre of focus. Everyone else’s eyes con-

verge near the horizon line. Photographers use the rule of thirds

trick more often than the golden ratio. Although both ratios appear

to fit Da Vinci’s painting, it is not evident that he did this on purpose.
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Figure 2. Not a right angle when looked at.

Perspective is something our brains deal with constantly without

us realising. The section of wall directly in front of us is closer, so it

appears larger than the section of wall in the corners of the room. To

our eyes, the wall starts small in the corners of the room, gets larger

in the middle, and shrinks again as it approaches the next corner.

Our brains fill in the gaps to tell us the wall is a rectangle.

The phenomena described can be thought of as a consequence

of our projection of a cuboid room onto our sphere of vision. When

mapping the edges of the room onto our sphere of vision, the corners

must add to 360 degrees, which three 90-degree angles cannot do,

so the lines instead must curve and stretch (Figure 3).
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Figure 3. Projection of cube room onto sphere.

This is noticed when taking a photograph with people near the

edges. Their faces become distorted as a result of rectilinear projec-

tion, the correction that a wide-angle lens makes to help things look

straighter. An alternative effect occurs when using a fish-eye lens or

taking a panoramic photo. This kind of image is a curvilinear pro-

jection: everything is the right proportion, but straight lines appear

curved.

The bending of our visible world is not a problem most of the

time—it only occurs when we are trying to capture things very far

apart in our vision—but realist artists should be aware of such op-

tical paradoxes nonetheless (Figure 4). Once again, understanding

geometry can help us create more realistic images.
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Figure 4. Rectilinear versus curvilinear projection. In the top image,

the rectilinear camera lens corrects the distortion. Everything in

the image looks straight, but near the corners, the image has been

stretched, whereas in the second image, everything is the right size,

but straight lines appear curved. The bottom image cannot be cre-

ated standing in one spot. It is a rolling snapshot where everything

appears to face forwards. The bookshelf on the right exhibits clearest

difference. This is the flat perspective seen in medieval artwork that

the Renaissance painters dismissed with their methods of perspec-

tive.



66

What of abstract, wavering paintings that disregard dimension?

Take Pollock’s Birth or Picasso’s Weeping Woman. These painters

cannot benefit from the above tricks. I would argue, however, that

they still must have a sense of space. They must leave enough room

for the eyes of an ambiguous monster even if they are not halfway (or

𝜑-way) up the face, and while the colour and texture of individual

brushstrokes might be out of their control, the shapes and forms

they represent are mathematical objects in 2D space (or 3D space

for sculptors), much in the same way that a composer cannot control

the texture of instruments but can arrange notes to perfection on the

stave.

Art is distinct from mathematics and the abstract concepts it

often symbolises—whether love, conflict or sorrow—are hard to

describe with numerical formulas, but the media through which

visual artists communicate requires mathematical knowledge and

can benefit particularly from geometry.
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Cryptic Crossword
Niphredil
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ACROSS

1 Sum limit necessary?

(8)

7 10 = 2 (4,3)

8 Quote in a mess to be

solved (8)

9 Spooner’s unhasty

solution for set (7)

12 Raises without former

partner makes one’s

patient (13)

16 Friendly state of 3-D

shape (8,5)

18 Scare fit meat is on or

off? (7)

22 17D’s opposite,

swapping sigma for

gamma (8)

23 Mean, as standard (7)

24 ... of dance steps, or

numbers? (8)

DOWN

1 Opposite in poetry (7)

2 On par (5)

3 Taxi’s end takes love to my

principle (5)

4 Elsewhere places the result (7)

5 Open or closed, for

ticket-holders? (4)

6 Done complicated part of

graph (4)

10 Angle on funny toe bus (6)

11 Warned of dodgy function

dealers stirring leaven (1,5)

13 Eleven’s letter? (2)

14 X marks the spot on the

number line (3)

15 Sounds tart (2)

16 Big task forecast (7)

17 Detective, hit grass and run

away (7)

18 Two as leaning (4)

19 Scrappy rags give inputs (4)

20 Numbers on the radio compel

(5)

21 Thick, like the rationals in the

reals? (5)



69

The Invariants committee 2024-25

Position Name College

President Vasil Zelenkovski Balliol College

Treasurer Arav Bhattacharya Jesus College

Secretary Nathan Adlam Balliol College

IT Officer Tobias Bretschneider Balliol College

Puzzle Master Atharva Parulekar St John’s College

Puzzle Master Tamio Vesa Nakajima Trinity College

Puzzle Master Luke Corey Balliol College

Social Secretary Anubhab Ghosal St Edmund Hall

Publicity Secretary Mountain Cheng The Queen’s College

Magazine Editor Toby Lam Balliol College

Magazine Editor Diego Vurgait Oriel College

Solutionstothecrossword.Across.1.INTEGRAL.7.BASETWO.8.EQUATION.9.CLO-
SURE.12.EXPONENTIATES.16.PLATONICSOLID.18.BOOLEAN.22.CONVERSE.
23.AVERAGE.24.SEQUENCE.Down.1.INVERSE.2.EQUAL.3.AXIOM.4.OUT-
PUTS.5.BALL.6.NODE.10.OBTUSE.11.VNEALE.13.XI.14.TEN.15.PI.16.
PROJECT.17.DIVERGE.18.BIAS.19.ARGS.20.FORCE.21.DENSE.



70


